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With the results and notations of Part 1* and Kalnay, 1974 (hereafter called
B),I we demonstrate what follows. Let & the Poincaré transformation
Xy = Zylyxy +ay. Let

UZ (b, bM)bex)[U?b, 617! = 3 (e be(®) 6y
¢

Us (f, I VW@ Us (FFO7 = 2 (A f2(2) @
¢

be the unitary induced transformations on the Bose and Fermi (para-Fermi)
fields b and f of the standard theory, i.e. the one in which the f fields are
primary entities, that is, non-Bose-constructed. We want to have the same
transformation law (2) for f in the Bose representation of those fields in which
the unitary transformations are Bose constructed operators Ug (b, b*):

Uz (0, 5)f¢(@)[Ug 0, 6M)] 7! = 3 (A2 f2(2) 3
3

1 See footnote of Part I which applies also to this paper.

* Kalnay & Kademova (1974).

£ We follow the same abbreviations for the references as those of Part I, hereafter
called 1.
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Remark 1. Because of Stone’s theorem, there exists Hermitian operators
G#(b,b"), Gz(f,f*) and G4 (b, b™) such that

U# =exp iG?, Ug =expiGy, Uz=expiGy 4

Theorem 2. To have in the Bose representation of Fermi and para-Fermi
fields the transformation law (3), put

Ug (b,6")=Ug [f(b,57),f (b, )] (5)

Proof. Use Remark 1 and the Theorem of 1. [T

Remark 3. The same reasoning leads to equation (5) when it is induced by
a non-spatial transformation as, for example, gauge transformations.

Remark 4. Let us consider the case when the G’s are (up to c-number para-
meters) the angular momenta M*. Because of I, the algebraic relations among
f(b,b%yand M5’ (b, b*) are the same as those among f and (MZ )" of the
standard theory. But it is known that these last relations determine the spinor
transformation properties of /. Therefore, the Bose constructed f(b, ") also
transforms as a spinor. In order to visualise that this does not contradict the
tensor transformation properties of b we shall develop the formalism further.
In what follows we assume the conditions for Fock representation for the
Fermi or para-Fermi commutation rules (cf. B).

Definition 5. We put z = (2o, 2), X = (xg, X), X' = (xg, x). Then we call
Freer(z,%,x7) = (0| be(x)fe(2)bE(x") 107 (6)

Theorem 6. When x = x; the Fe(z, x, x") are matrix elements of a z
time-dependent Fermi matrix Fi(z).

Proof. Taking into account equations (3) and (4) of I, put f¢(z) = V() V",
V = exp (—iHxg) exp (iHz ). As f is Fermi or para-Fermi, the same applies to
f'. Then by Theorem 3.2 of B we prove that Fi(z) is Fermi. Take into account
equations (3)-(4) of Part I. [J]

Theorem 7. Under & the Fe'(z, x, x') transforms according to
Fp(2,%,%)= 3 Ay Ne Ny Fige' 2, %, %) Q)
31

Proof. Use equations (1), (3)and (6). O

Theorem $. The manifestly covariant form of the Bose representation of
Fermi or para-Fermi fields is

fi@)= 2 [do [ do'Fee(e, x, )b (2)ber(x") ®)
8o o
where o is an arbitrary space-like hypersurface.

Proof. The covariance is guaranteed by equations (1), (3) and (7). In order
to prove that the right-hand side of (8) is a Fermi operator when acting on
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B, (or a para-Fermi when acting on 4) it is sufficient to construct the proof
in a special frame; choose an instantaneous o to be defined by x4 = z,. Then

the right-hand side of (8) reduces to the Bose representation of fermions
(respectively parafermions) given in papers A (Kélnay, MacCotrina & Kademova,
1974) and B. Finally, the proof that the evolution of both sides of equation

(8) according to the time z is the same can be achieved in a frame such that

o be instantaneous corresponding to xo = 0, but unrelated to z4. Then,

equation (8) is consistent as regards time evolution if given a H , i.e. once

fixed the zo dependence of f(z), there exist Fye'(zg, 2; X, X') and

Feep(zo +820,2;%, X) such that

feeo)=3 [ @ [ %' Frp(zo, 2%, X)b ()b (x)  (9)
14l

and

felzo +8z0,2)= 3 f d3x f dsx'FK;'(zO +820, 2; X, X ) b (x) b (x)
&' (10)

But according to Theorem 3.2 of B, such F exist and can be made explicit as
Fiee(zo, 2%, ') = %0 | be(x)f (20, Db (x) | 007 (n
and, by using equation (3) of I to complete fat zy + 8z,
Fiep'(zo +620,2:%,X") = (0| be(x)fi (2o + 820, )bE(X) | 0Y% (12)

Remark 9. From the role in equation (8) of the tensor indices {, {’ and of
the spinior index &, it is apparent that the Bose representation does not intro-
duce conflict between the tensor transformation laws of bosons and the
spinor laws of fermions and parafermions.

Note added in proof: For the form that replaces the right-hand side of
equation (8) when gauge constraints are present, see Kilnay, A. 1., Electrons
and Photons in the Bose Description of Fermions, Preprint 1C/74/109,
International Centre for Theoretical Physics, Trieste.
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